爱因斯坦广义相对论中的内容,他解释了引力作用和加速度作用没有差别的原因。还解释了引力是如何和时空弯曲联系起来的,利用数学,爱因斯坦指出物体使周围空间、时间弯曲,在物体具有很大的相对质量(例如一颗恒星)时,这种弯曲可使从它旁边经过的任何其它事物,即使是光线,也改变路径。广义相对论指出,时空曲率将产生引力。
当光线经过一些大质量的天体时,它的路线是弯曲的,这源于它沿着大质量物体所形成的时空曲率。因为黑洞是极大的质量的浓缩,它周围的时空非常弯曲,即使是光线也无法逃逸。爱因斯坦的广义相对论认为,由于有物质的存在,空间和时间会发生弯曲,而引力场实际上是一个弯曲的时空。爱因斯坦用太阳引力使空间弯曲的理论,很好地解释了水星近日点进动中一直无法解释的43秒。
广义相对论的第二大预言是引力红移,即在强引力场中光谱向红端移动,20年代,天文学家在天文观测中证实了这一点。广义相对论的第三大预言是引力场使光线偏转。最靠近地球的大引力场是太阳引力场,爱因斯坦预言,遥远的星光如果掠过太阳表面将会发生一点七秒的偏转。
弯曲空间的数学理论是在19世纪,主要由本哈·黎曼(Bernhard Riemann)发展出来的。即使是最简单的情况,弯曲几何的特性也是欧几里德几何完全没有的。再次考虑一个球面。这是一个二维空间,曲率为正值且均匀(各点都一样),因为两个曲率半径都等于球面的半径。连接球面上两个分离点的最短路线是一个大圆的一段弧,即以球心为中心画在球面上的一个圆的一部分。
大圆之于球面正如直线之于平面,二者都是测地线,就是最短长度的曲线。一架不停顿地由巴黎飞往东京的飞机,最省时间的路线是先朝北飞,经过西伯利亚,再朝南飞,这才是最短程路线。由于所有大圆都是同心的,其中任何两个都相交于两点(例如,子午线相交于两极),换句话说,在球面上没有平行的“直线”。
我们现在来考虑广义相对论的四维几何。重要的是,时空是弯曲的,而不仅是空间。黎曼曾试图以弯曲空间来使电磁学和引力相和谐,他之所以未成功,是因为没有扭住时间的“脖子”。设想我们把石块掷向地面上10米外的靶子。在地球引力作用下石块将沿连接出手处和靶子的抛物线飞行,其最大高度取决于初始速度。
如果石块以10米/秒的速度掷出,并将用1.5秒钟落到目标,则其最大高度为3米。如果改成用枪射击,且子弹初速为500米/秒,则子弹将沿高为0.5毫米的弧线用0.02秒钟击中目标;如果子弹被射到12公里高的空中再落到靶子上(忽略空气的影响和地球自转),它的总飞行时间就大约是100秒。由此推至极限,也可以用速度为30万公里/秒的光线来射靶子,这时的轨道弯曲变得难以觉察,几乎成了一条直线。显然,所有这些抛物线的曲率半径各不相同。
现在加进时间维度。无论对石块、子弹还是光子,在时空中量度的曲率半径都精确地相等,其值为1光年的星级。因此,更合理的说法是,时空轨道是“直”的,而时空本身被地心引力所弯曲,不受任何其他力的抛射体将沿测地线运动(等价于说沿弯曲几何中的直线运动)。
所有理论都有自己的方程式。爱因斯坦引力场方程把时空变形的程度与引力源的性质和运动联系了起来,物质告诉时空必须如何弯曲,而时空告诉物质必须如何运动。爱因斯坦方程是极为复杂的,其中涉及的物理量不再只是力和加速度,而是还有距离和时间间隔。它们是张量,这种量的每一个都像一张有着多项条目的表格,包含着关于几何和物质的所有信息。
时空会弯曲是真的,这是毋容置疑的。引力波能被探测到就是最好的证明。因为引力波是时空的涟漪,是时空的振动,这说明空间是具有弹性的,不是纯刚体的东西。
有人说惯性的本质是时空弯曲,这样说对吗?
研究者提出由广义相对论解释惯性的可能成因:静者恒静乃是因为静止质量会扭曲时空产生凹陷,犹如一个铁球放在弹簧床的正中央产生了凹陷,此凹陷限制了铁球的运动并固定其位置,此可解释为何引力质量恰与惯性质量完全相等,是故静者恒静。
动者恒动是因为广义相对论有旋转参考系托曳,及线性参考系托曳,当一个具质量物体转动时时空会跟着转动,而直线运动时时空也会跟着直线运动,根据参考系托曳公式,时空场运动的幅度正比于角动量或动量,当时空转动时其上的物体会跟着转动而当时空线性前进时物体也会跟着向前运动,当物体再转动或直线前进时它又会带动时空的转动或直线运动,如此循环不息的正向回馈,造成了动者恒动转者恒转,这也是动量守恒及角动量守恒的原因,是故动量为物体直线运动的惯性而角动量为物体旋转运动的惯性。